报告人:Prof. Song Jin (金松)
Department of Chemistry,University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, US(jin@chem.wisc.edu)
报告地点:强磁场中心磁体楼201会议室
报告时间:9月2日上午10:00 – 11:00 (星期一)
报告人简介:金松目前任美国威斯康星大学麦迪逊分校化学系的教授。他2002年,在康奈尔大学Francis J. DiSalvo教授的指导下获得博士学位,毕业后到哈佛大学Charles M. Lieber教授研究组做博士后研究。金博士的研究主要在纳米和固态材料的化学与物理性质及其应用,尤其是对可再生能源方面的研究感兴趣。他提出了一种合成各种纳米材料(金属硅化物,氧化物和硫化物)的新方法,加深了对晶体生长理论中纳米材料螺型位错驱动生长的理解。在新颖物理性质的理解基础上,金博士也在跨学科的光伏和光电化学太阳能转换、热电能量转换、储能、纳米自旋电子学以及生物技术开发(纳米)等方面进行了探索,在研究中发表学术论文87篇,获得了NSF CAREER Award(美国国家科学基金会杰出青年教授奖),Research Corporation Cottrell Scholar Award和MIT Technology Review Magazine评出的年龄在35岁以下世界顶级的35位创新者之一(TR35奖),ACS Exxon Mobil Solid State Chemistry Fellowship (ACS埃克森美孚固态化学奖学金),Alfred P. Sloan Research Fellowship(斯隆研究奖学金)。最近,因太阳能转换研究获得了Research Corporation SciaLog Award and U. of Wisconsin-Madison Vilas Associate award and Romnes Faculty Fellowship。
报告题目:Thermoelectric and Magnetic Studies of Metal Silicide Nanowires
摘要:Transition metal silicides have many interesting physical properties and significant applications. Many of these properties/applications may be changed/improved by making 1-dimensional nanowire materials. Chemical synthesis of silicide nanowires is challenging due to the complex phase behaviour between metals and silicon and the complex stoichiometries and structures of metal silicides. We have developed methods to synthesize free standing nanowires of many silicides, including the B20 family FeSi, CoSi, MnSi, and alloyed FexCo1-xSi, semiconducting MnSi1.75, and many other metallic or semiconducting silicides.
I will discuss reduced thermal conductivity and potentially enhanced thermoelectric properties in nanowires of semiconducting higher manganese silcides “MnSi1.75”. The B20 monosilicides (MnSi, FeSi, CoSi) and their alloys can display helimagnetic and exotic Skyrmion magnetic ordering promising for spintronics. We have developed a method based on Andreev reflection spectroscopy to electrically determine the spin polarization ratios in the FexCo1-xSi nanowires and a general method to measure Hall effect in MnSi nanowires. We have found magnetic Skyrmions exist in MnSi nanowires using both Lorentz TEM and Hall effect measurements, where the signature of topological Hall effect was clearly observed. The Skyrmion is stable over a larger range MnSi nanowires compared to bulk crystal and thin films of MnSi.
© 1996 - 强磁场科学中心 版权所有 皖ICP备05001008号-11
地址:安徽省合肥市蜀山湖路350号 邮编:230031 电话:0551-65591149 传真:0551-65591149 邮箱:chmfl@hmfl.ac.cn